Skip to main content

본문내용

종목정보

뉴스·공시

딥바이오, 유방암 분석 AI 알고리즘 성능평가 연구 발표
2024/05/21 14:21 뉴스핌
유방암AI분석 알고리즘 모델 이미지 (사진=딥바이오 제공)

[서울 = 뉴스핌] 메디컬투데이 = 딥바이오는 지난 7일 유방암 수술 후 체취한 검체에서 침윤성 유방암(IDC)의 병변과 비침윤성 상피내암(DCIS)의 병변을 정확하게 분할해 암종을 식별하는 자사의 유방암 분석 AI 알고리즘 성능 평가 연구 결과를 발표했다고 21일 밝혔다.

가톨릭대학교 부천성모병원 진민선 교수, 고대 구로병원 김정렬 교수 등과 함께 공동 수행한 해당 연구는 바이오 엔지니어링 분야의 저명한 학술지인 'MDPI Bioengineering'의 특별호 'Computational Pathology and Artificial Intelligence'에 게재됐다.

유방암은 세계에서 가장 흔한 여성 암으로 전체 여성 암의 24.5%를 차지하며, 사망률 또한 15.5%로 가장 높다. 유방암의 경우 환자별 발병 양상을 병리학적으로 분류했을 때 발병 빈도순으로 침윤성 유관암, 침윤성 소엽암, 유관 상피내암 등으로 상이하며, 이러한 환자별 유방암 발병 양상과 중증도에 따라 치료 방법이 달라지는 것이 특징이다. 특히 이번 연구에서 주요 유방암의 한 종류로 꼽히는 침윤성 유관암(IDC)의 경우 전체 유방암의 70~80%에 달한다.

연구자들은 헤마톡실린과 에오신(H&E)으로 염색된 유방암 병리 슬라이드 이미지를 활용하여 유방암 병변을 사용자에게 자동으로 제공하는 유방암에 대한 다중 해상도 선택적 분할 모델(MurSS)을 제안했다.

이 모델은 다중 해상도의 이미지를 활용해 진단 정확도를 향상시키며 진단에 있어 불확실한 영역을 자동으로 학습에서 제외하는 선택적 분할 방법(selective segmentation method)을 도입해 모델 결과의 안정성과 신뢰성을 높였다.

이렇게 학습된 MurSS는 유방암 H&E 슬라이드에서 96.88%의 픽셀 레벨 정확도를 달성했다. 이는 기존에 발표된 최신 딥러닝 모델들에 비해 높은 정확도를 보여줬다.

딥바이오의 곽태영 CTO는 "다중 해상도 선택적 분할모델을 사용하면 유방암 병리 슬라이드에서 암 영역을 보다 정확히 계측하여 관내상피암 등을 제외한 침습암의 크기 측정에 도움을 줄 수 있다"며 "정확한 암 영역을 제안함으로써 향후 개발되는 각종 암지표 자동분석알고리즘을 활용했을 경우 보다 정밀한 결과 예측을 가능하게 할 수 있을 것으로 기대된다"고 밝혔다.

이 기사는 메디컬투데이가 제공하는 기사입니다


저작권자(c) 글로벌리더의 지름길 종합뉴스통신사 뉴스핌(Newspim), 무단 전재-재배포 금지

광고영역

하단영역

씽크풀 사이트에서 제공되는 정보는 오류 및 지연이 있을 수 있으며, 이를 기반으로 한 투자에는 손실이 발생할 수 있습니다.
그 이용에 따르는 책임은 이용자 본인에게 있습니다. 또한 이용자는 본 정보를 무단 복사, 전재 할 수 없습니다.

씽크풀은 정식 금융투자업자가 아닌 유사투자자문업자로 개별적인 투자상담과 자금운용이 불가합니다.
본서비스에서 제공되는 모든 정보는 투자판단의 참고자료로 원금 손실이 발생될 수 있으며, 그 손실은 투자자에게 귀속됩니다.

㈜씽크풀 서울시 영등포구 국제금융로 70, 15층 (여의도동, 미원빌딩)

고객센터 1666-6300 사업자 등록번호 116-81-54775 대표 : 김동진

Copyright since 1999 © ThinkPool Co.,Ltd. All Rights Reserved